0

“3D-printed calcium-phosphate-based bone-like scaffolds” improved by 30-45% when using Turmeric | #Zingiberaceae #3DThursday #3Dprinting

Quite intriguing news from DesignNews on using “a compound found in turmeric” to improve artificially grown bones:

Nutritionists and health-food proponents have long known about the health benefits of turmeric. Now, scientists are beginning to see how the spice can help improve the bone-growing capabilities of 3D-printed bones.

A team at Washington State University (WSU) has combined aspects of natural medical cures with modern biomedical techniques by pairing curcumin—a compound found in turmeric—with ceramic bone scaffolds. Their aim is to improve the capabilities of artificial bones to grow in a way that can benefit people who suffer from bone injuries or diseases like osteoporosis.

Asian countries have been using turmeric as medicine for centuries. Curcumin has been shown to have antioxidant, anti-inflammatory, and bone-building capabilities, as well as success in preventing various forms of cancers. However, the human body doesn’t absorb curcumin well when it’s taken orally, as the compound becomes metabolized and eliminated too quickly.

The WSU team—led by Susmita Bose, chair professor in the School of Mechanical and Materials Engineering—found that by coating 3D-printed, ceramic bone scaffolds with curcumin, they could improve their ability to grow bones by 30 to 45 percent. Those bone scaffolds are composed of about 68 percent calcium phosphate.

Read more here.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 9,200+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Japanese word working and more in December’s issue of HackSpace magazine!

Wearables — Solder-less magic

Electronics — = != ==.

Biohacking — Finding Bliss with Anandamide

Python for Microcontrollers — sysfs is dead! long live libgpiod! libgpiod for linux & Python running hardware @circuitpython @micropython @ThePSF #Python @Adafruit #Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.