0

Industrial Exoskeletons Are Here With More to Follow #WearableWedesdays

via Wearable Technologies

Powered exoskeletons are wearable mechanical devices that are powered by a system of electric motors, levers, pneumatics, hydraulics, or a combination of technologies that enables limb to move with increased strength and endurance. These devices made of rigid or soft materials are worn by people whose construction mirrors the structure of their limbs, joints, and muscles and works in tandem with them.

In the past, exoskeletons were designed by defense departments for military applications. After that, these devices were commercially produced for medical rehabilitation (often for wounded veterans), or as mobility aids allowing paraplegics to stand upright, walk and climb stairs.

The new generation of commercial exoskeletons have been helped by more efficient battery solutions, while others resorted to non-traditional power solutions such as compressed air. Examples of commercial class powered exoskeletons are: Innophys’ Muscle Suit, Activelink’s Powerloader Ninja, Cyberdyne’s HAL for Labor Support RB3D’s HERCULE, Esko Bionics’ Esko Vest, Sarcos Robotics’ Guardian XO and Noonee’s Chairless Chair.

As opposed to powered exoskeletons, unpowered exoskeletons employ a combination of human guided flexion/extension and locking mechanisms to increase strength and stability. Unpowered exoskeletons for commercial and industrial use includes suitX’s MAX Exoskeleton Suite, Ekso Bionics’ Work Vest, StrongArm Technologies’ FLx ErgoSkeleton, Laevo’s Laevo and Lockheed Martin’s Fortis.

See and learn more!


Flora breadboard is Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 12,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? The Electronics Show and Tell with Google Hangouts On-Air is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — What’s next for Indiegogo after leadership shakeup

Wearables — Turn up the volume

Electronics — Stay current with sourcing and sinking

Biohacking — Increase HRV with Biofeedback

Python for Microcontrollers — Python on hardware measures up, FEATHER soars, and more! #Python #Adafruit #CircuitPython #PythonHardware @circuitpython @micropython @ThePSF @Adafruit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.