Powered exoskeletons are wearable mechanical devices that are powered by a system of electric motors, levers, pneumatics, hydraulics, or a combination of technologies that enables limb to move with increased strength and endurance. These devices made of rigid or soft materials are worn by people whose construction mirrors the structure of their limbs, joints, and muscles and works in tandem with them.
In the past, exoskeletons were designed by defense departments for military applications. After that, these devices were commercially produced for medical rehabilitation (often for wounded veterans), or as mobility aids allowing paraplegics to stand upright, walk and climb stairs.
https://www.youtube.com/watch?v=GH3vVUUQDT4
The new generation of commercial exoskeletons have been helped by more efficient battery solutions, while others resorted to non-traditional power solutions such as compressed air. Examples of commercial class powered exoskeletons are: Innophys’ Muscle Suit, Activelink’s Powerloader Ninja, Cyberdyne’s HAL for Labor Support RB3D’s HERCULE, Esko Bionics’ Esko Vest, Sarcos Robotics’ Guardian XO and Noonee’s Chairless Chair.
As opposed to powered exoskeletons, unpowered exoskeletons employ a combination of human guided flexion/extension and locking mechanisms to increase strength and stability. Unpowered exoskeletons for commercial and industrial use includes suitX’s MAX Exoskeleton Suite, Ekso Bionics’ Work Vest, StrongArm Technologies’ FLx ErgoSkeleton, Laevo’s Laevo and Lockheed Martin’s Fortis.
Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!