0

How Do Fireworks Get Their Glorious Colors?

Via Livescience!

Behind the scenes of the dazzling light shows that make spectators “Ooh!” and “Ahh!” on the Fourth of July, are carefully crafted fireworks. Whether red, white and blue fountains or bursts of purple sparks, each firework is packed with just the right mix of chemicals to create these colorful lights.

Inside each firework is something called an aerial shell — a tube that contains gunpowder and dozens of small modules called “stars,” which measure about 1 to 1.5 inches (3 to 4 centimeters) in diameter, according to the American Chemical Society (ACA). These stars hold fuel, an oxidizing agent, a binder and metal salts or metal oxides — the source of the firework’s hues. A time-delay fuse ignites the gunpowder and bursts the aerial shell once the firework is midair, causing the stars to scatter and explode far above the ground, producing a shower of light and color.

Once exposed to fire, the stars’ fuel and oxidizing agents generate intense heat very rapidly, activating the metal-containing colorants. When heated, atoms in the metal compounds absorb energy, causing their electrons to rearrange from their lowest energy state to a higher “excited” state. As the electrons plummet back down to their lower energy state, the excess energy gets emitted as light. [5 Dazzling Facts About Fireworks]

Each chemical element releases a different amount of energy, and this energy is what determines the color or wavelength of the light that is emitted.

For instance, when sodium nitrate is heated, electrons in the sodium atoms absorb the energy and get excited. As the electrons come down from the high, they release their energy, about 200 kilojoules per mole (a unit of measurement for chemical substances) or the energy of yellow light, according to the website of the University of Wisconsin-Madison chemistry professor Bassam Z. Shakhashiri.

The recipe that creates blue includes varying amounts of copper chloride compounds. Red comes from strontium salts and lithium salts, and the brightest red is emitted by strontium carbonate, the ACA explained on their website.

Just like paints, secondary colors are made by combining the ingredients of their primary-color relatives. A mixture of blue-producing copper compounds and red-producing strontium compounds results in purple light, the ACA reported.

See more!


Make a robot friend with Adafruit’s CRICKIT – A Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Circuit Playground Express, FEATHER and other platforms to make and program robots with CircuitPython, MakeCode, and Arduino. Start controlling motors, servos, solenoids. You also get signal pins, capacitive touch sensors, a NeoPixel driver and amplified speaker output. It complements & extends your boards so you can still use all the goodies on the microcontroller, now you have a robotics playground as well.

Join 7,500+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Electronics manufacturing is a burger of complexity

Wearables — Battery wash cycle

Electronics — How to make your own magnetic field probe!

Biohacking — The State of DNA Analysis in Three Mindmaps

Python for Microcontrollers — Getting Started with Adafruit Circuit Playground Express

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.