0

How a ‘BionicFinWave’ Underwater Bot Might Look & Maneuver | #robots

Rad looking fishbot from Festo. This video is a good excuse for making more projects to take advantage of acrylic see-through chambers as well:

The marine planarian, cuttlefish and Nile perch have one thing in common: in order to propel themselves, they use their fins to generate a continuous wave, which advances along their entire length. With this so-called undulating fin movement, the BionicFinWave also manoeuvres through a pipe system made of acrylic glass. At the same time the autonomous underwater robot is able to communicate with the outside world wirelessly and transmit data – such as the recorded sensor values for temperature and pressure – to a tablet.

The fins on the natural role models run from head to tail and are located either on the back, the stomach or on both sides of the body. The wave-shaped movement of the fins allows the fish to push the water behind them, thereby creating a forward thrust. Conversely the creatures can also swim backwards in this way and, depending on the wave pattern, create uplift, downforce or even lateral thrust.

Read more here.


Join 7,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython in 2018 – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — American startups are having an increasingly smaller share of the market

Wearables — Switch the advantage

Electronics — Don’t float!

Biohacking — Optimizing the Warm Up

Python for Microcontrollers — CircuitPython 3.0.0 released!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.


Leave a comment

Adafruit has a "be excellent to each other" comment policy. Help us keep the community here positive and helpful. Stick to the topic, be respectful of makers of all ages and skill levels. Be kind, and don't spam - Thank you!

Prove you are human by reading this resistor:

0Ω+/- 5%

0
0
1
2
3
4
5
6
7
8
9

0
0
1
2
3
4
5
6
7
8
9

0
0
1
2
3
4
5
6
7
8
9

5
5
10

Prove you are human by reading this resistor:


Match the sliders on the left to each color band on the resistor.

Click Here for a new resistor image.

New to electronics? Click here to learn how to read resistor values.

Or learn to read resistors by playing Mho's Resistance!