Adafruit will not be shipping orders Thanksgiving Day, Thursday November 22, 2018. Expedited orders placed after 11am ET Wednesday November 21 will go out Friday November 23.
0

Coming to a Smartphone Near You: ‘Molecular Clock on a Chip’ – Uses Rotation of Molecules for Timekeeping! #MIT #AtomicClock

The clock transmitter chip (pink) wired to a circuit board package. Connected is a metal gas cell (right), in which a 231.061 GHz signal generated from the chip excites the rotation of carbonyl sulfide molecules. Because the peak rotation of the molecules is constant, it can be used as a reference point to keep accurate time.

This is a fascinating article from MIT about bringing molecular clocks to smartphone-scale devices:

MIT researchers have developed the first molecular clock on a chip, which uses the constant, measurable rotation of molecules — when exposed to a certain frequency of electromagnetic radiation — to keep time. The chip could one day significantly improve the accuracy and performance of navigation on smartphones and other consumer devices.

Today’s most accurate time-keepers are atomic clocks. These clocks rely on the steady resonance of atoms, when exposed to a specific frequency, to measure exactly one second. Several such clocks are installed in all GPS satellites. By “trilaterating” time signals broadcast from these satellites — a technique like triangulation, that uses 3-D dimensional data for positioning — your smartphone and other ground receivers can pinpoint their own location.

But atomic clocks are large and expensive. Your smartphone, therefore, has a much less accurate internal clock that relies on three satellite signals to navigate and can still calculate wrong locations. Errors can be reduced with corrections from additional satellite signals, if available, but this degrades the performance and speed of your navigation. When signals drop or weaken — such as in areas surrounded by signal-reflecting buildings or in tunnels — your phone primarily relies on its clock and an accelerometer to estimate your location and where you’re going.

Read more here.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, or even use Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for MakeCode, CircuitPython, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 8,700+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – Python on Microcontrollers is here!

Have an amazing project to share? Join the SHOW-AND-TELL every Wednesday night at 7:30pm ET on Google+ Hangouts.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Spotlight on Makeblock, one of the latest companies to find success in the STEAM market

Wearables — Emphasize the light

Electronics — Avoid serial confusion!

Biohacking — BDNF a Biohackers Best Friend

Python for Microcontrollers — Python powers costumes, and community @circuitpython @micropython @ThePSF #Python

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.