The answer lies in the outer corona of the Sun, where the solar wind originates. If the Sun causes the turbulence, then the outer corona itself should have some structure. Up until now, when scientists studied the outer corona, it appeared smooth and homogenous. The team used long-exposure images from the spacecraft STEREO-A that blocked out the star itself to look at this area. The problem was increasing the resolution of cameras that were already flying in space and couldn’t be serviced.
The answer: Use algorithms in order to process the images in various ways to enhance the clarity. By filtering out the noise from background stars, correcting for how long the shutter was open during image capture and normalizing brightness, the team was able to reduce the signal-to-noise ratio and produce clearer and crisper images. Additionally, the team ran an algorithm to reduce motion blur in real-time. They accomplished this by actually shifting their images to take the motion of the solar wind into account. “We smoothed, not just in space, not just in time, but in a moving coordinate system,” DeForest said. “That allowed us to create motion blur that was determined not by the speed of the wind, but by how rapidly the features changed in the wind.”
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey