Radar Glasses #WearableWednesday


From tpsully on Instructables:

I recently wrote another Instructable about a young friend at work who lost his sight in his right eye and a device I made for him to tell him if there was something on his right side. If you want to read it it’s here. That device used a Time-of-Flight sensor by ST Electronics. About a minute after finishing that project I decided that I could make a device to help the blind. The VL53L0X sensor I used on that project has a big brother/sister sensor called the VL53L1X. This device can measure greater distances than the VL53L0X. There was a breakout board for the VL53L0X from Adafruit and for the VL53L1X there was a breakout board from Sparkfun. I decided to create a pair of glasses with the VL53L1X on the front and a haptic feedback device (vibrating motor) behind the glasses near the bridge of the nose. I would vibrate the motor inversely proportional to the distance to an object i.e the closer an object was to the glasses, the more it would vibrate.

I should note here that the VL53L1X has a very narrow Field of View (programmable between 15-27 degrees) meaning, they are VERY directional. This is important as it gives good resolution. The idea is that the user can move their head like a radar antenna. This along with the narrow FOV allows the user to better discern objects at different distances.

A note about the VL53L0X and VL53L1X sensors: they are time-of-flight sensors. This means that they send out a LASER pulse (low power and in the Infrared spectrum so they are safe). The sensor times how long it takes to see the reflected pulse come back. So distance equals rate X time as we all remember from math/science classes right? So, divide the time in half and multiply by the speed of light and you get distance. But as was pointed out by another Instructables member, the glasses could have been called LiDAR Glasses as using a LASER in this way is Light Distance and Ranging (LiDAR). But as I said, not everyone knows what LiDAR is but I think most people know RADAR. And while infrared light and radio are all part of the electromagnetic spectrum, light is not considered a radio wave as microwave frequencies are. So, I’ll leave the title as RADAR but now, you understand.

This project uses basically the same schematic as the one for the other project…as we’ll see. The big questions for this project are, how do we mount the electronics on glasses and, what kind of glasses do we use?

Read more

Flora breadboard is Every Wednesday is Wearable Wednesday here at Adafruit! We’re bringing you the blinkiest, most fashionable, innovative, and useful wearables from around the web and in our own original projects featuring our wearable Arduino-compatible platform, FLORA. Be sure to post up your wearables projects in the forums or send us a link and you might be featured here on Wearable Wednesday!

Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards

Join Adafruit on Mastodon

Adafruit is on Mastodon, join in! adafruit.com/mastodon

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 36,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org

Maker Business — “Packaging” chips in the US

Wearables — Enclosures help fight body humidity in costumes

Electronics — Transformers: More than meets the eye!

Python for Microcontrollers — Python on Microcontrollers Newsletter: Silicon Labs introduces CircuitPython support, and more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

Adafruit IoT Monthly — Guardian Robot, Weather-wise Umbrella Stand, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — #NewProds 7/19/23 Feat. Adafruit Matrix Portal S3 CircuitPython Powered Internet Display!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.