3D printing or additive manufacturing allows users to “print” a variety of items, from airplane parts to prosthetic limbs. 3D printing is still a relatively new technology and there are many gaps in the information available about health and safety implications. As with many innovations, workers are the first groups exposed to potential hazards. Based on prior knowledge from air pollution research and industrial processes (e.g., welding) there are concerns over 3D printing emissions and their potential impact on workers’ health.
…
During 3D printing, respirable particulate concentrations were non-detectable (below 0.03 micrograms per cubic meter, µg/m3) and VOC concentrations were well below applicable occupational exposure limits (OELs). Particulate and VOC concentrations measured in the conference room during 3D printing with 20 printers were much lower than those measured in the test chamber. This was likely due to general dilution as a result of the conference room’s larger ventilated space compared to the enclosed test chamber. However, local exhaust ventilation could reduce or eliminate the concentrations of ultrafine particle emissions that were measured in the conference room.
…
Our recommendations are based on an approach known as the hierarchy of controls, and would be applicable for all brands of 3D printers and filaments. This approach groups actions by their likely effectiveness in reducing or removing hazards. In most cases, the preferred approach is to eliminate hazardous materials or processes and install engineering controls to reduce exposure or shield employees.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.
Python for Microcontrollers — Python on Microcontrollers Newsletter: MicroPython Pico W Bluetooth, CircuitPython 8.0.4 and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi