This video is about Hardy’s Paradox, wherein an electron and positron (or photons polarized horizontally and vertically) pass through Mach-Zehnder interferometers that overlap such that the particles have a chance of annihilating. If they do annihilate, then the interference pattern changes and there is a probability for both particles to be detected in the “dark arms” of the detector, that is, where previously there was no probability for detection for either particle. The paradox has implications for local realism, contextuality, lorentz elements of reality, and has been used as an experimental setup for weak measurements.
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.
Python for Microcontrollers — Python on Microcontrollers Newsletter: ESP32 Web Workflow for CircuitPython, CircuitPython Day 2022 and more! #CircuitPython @micropython @ThePSF @Raspberry_Pi