0

The NASA fastener design manual #Space #Wearables #Fashion @NASA

How does one make sure things stay together in flight? NASA has given this some thought. From their intro to NASA Reference Publication 1228 (1990) Fastener Design Manual by Richard Barrett:

To the casual observer the selection of bolts, nuts, and rivets for a design should be a simple task. In reality it is a difficult task, requiring careful consideration of temperature, corrosion, vibration, fatigue, initial preload, and many other factors. The intent of this manual is to present enough data on bolt and rivet materials, finishes, torques, and thread lubricants to enable a designer to make a sensible selection for a particular design. Locknuts, washers, locking methods, inserts, rivets, and tapped holes are also covered.

The manual was written for design engineers to enable them to choose appropriate fasteners for their designs. Subject matter includes fastener material selection, platings, lubricants, corrosion, locking methods, washers, inserts, thread types and classes, fatigue loading, and fastener torque. A section on design criteria covers the derivation of torque formulas, loads
on a fastener group, combining simultaneous shear and tension loads, pullout load for tapped holes, grip length, head styles,
and fastener strengths. The second half of this manual presents general guidelines and selection criteria for rivets and
lockbolts.

With more makers building projects that need commercial (or even aerospace rated) fastening, this is a good read to garner lessons learned and best practices in fastener selection. You can’t win a DARPA competition when your autonomous lawn mower blade bolt has sheared off at the start or your cubesat shears apart due to the cold compromising the fasteners.

See the manual on the NASA.gov site here.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 14,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/


Maker Business — Robotics manufacturer Anki is stripped for parts

Wearables — Form a flame

Electronics — Lead-free Soldering Temperature

Biohacking — Vitamin-C + Gelatin for Accelerated Recovery

Python for Microcontrollers — See you at Supercon, Python #2 language on GitHub and more! #Python #Adafruit #CircuitPython #PythonHardware @circuitpython @micropython @ThePSF @Adafruit

Adafruit IoT Monthly — Helping Harry's Heart, CircuitPython meets AWS IoT and more!

Microsoft MakeCode — Lenticular Art Display with Crickit

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.