Since Particle started shipping new Particle Mesh hardware, I’ve been spending a lot of time exploring the new devices, Mesh networking, and the new world of add-ons that our Feather-compatible form-factor unlocks. In this post, I’ll share how you can use Particle Mesh devices with the Adafruit CRICKIT robotics platform.
I’ve written in the past about how the new Feather footprint on Particle Mesh devices opens up a world of plug-and-play capabilities with the rest of the Adafruit Feather ecosystem. With over 50 FeatherWings to choose from, there are a ton of options for your next project.
One FeatherWing that I’ve been playing with lately is the Adafruit CRICKIT FeatherWing. It’s a powerful, octagonal board that you can use to, as Adafruit likes to say, #MakeRobotFriend.
For my first set of experiments, I decided to play with a DC Motor, Servo, Neopixels, and the Capacitive Touch sensors. Read on to learn how you can use CRICKIT with Particle’s new Mesh hardware.
USING THE PARTICLE XENON WITH THE ADAFRUIT CRICKIT
Since all three new Particle Mesh devices–the Argon, Boron, and Xenon–are Adafruit Feather-compatible, you can use any device with the CRICKIT platform. The device just pops right in, and since our devices are pin-compatible, it will work as any other Feather microcontroller would. On the firmware side, nearly every popular Adafruit device with a library is supported on the Particle platform, so you should have no trouble jumping in with FeatherWing displays, sensors, and more.
Cricket stands for Creative Robotics & Interactive Construction Kit. It’s an add-on to our popular Feather ecosystem that lets you #MakeRobotFriend using CircuitPython, MakeCode (coming soon), or Arduino.
Plug in any Feather mainboard you want into the center, and you’re good to go! The Crickit is powered by seesaw, our I2C-to-whatever bridge firmware. So you only need to use two I2C data pins to control the huge number of inputs and outputs on the Crickit. All those timers, PWMs, sensors are offloaded to the co-processor. Get yours here!
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!