Neuromorphic computing utilizes an engineering approach based on the activity of the biological brain, Via Advanced Science News
Some areas of the brain are dedicated to processing specific external stimuli, such as vision or motor control. When an action is required as a result of a visual observation, spatially distributed regions have to be functionally connected for the association of these two heterogeneous signals (i.e., vision and motor control). Functional connectivity is mainly expressed as the synchronization of neural populations that may be distant from each other. For this purpose, global electrical oscillations in the brain synchronize distant neural populations, inducing a form of functional connectivity between them for short periods of time, thereby transcending the limitations of the hardwired synaptic network.
Despite its tremendous impact on biological neural communication, this type of functional connectivity remains largely unexplored in neuromorphic devices. In a collaboration between Dr. Paschalis Gkoupidenis of the Max Planck Institute for Polymer Research, Prof. George Malliara of the University of Cambridge, and Prof. Themis Prodromakis of the University of Southampton, the team explored how this functional type of connectivity can be induced in an array of organic neuromorphic devices immersed in a common electrochemical environment.