Landing multi-rotor drones smoothly is difficult. Complex turbulence is created by the airflow from each rotor bouncing off the ground as the ground grows ever closer during a descent. This turbulence is not well understood nor is it easy to compensate for, particularly for autonomous drones. That is why takeoff and landing are often the two trickiest parts of a drone flight. Drones typically wobble and inch slowly toward a landing until power is finally cut, and they drop the remaining distance to the ground.
Welcome to drone day on the Adafruit blog. Every Monday we deliver the latest news, products and more from the Unmanned Aerial Vehicles (UAV), quadcopter and drone communities. Drones can be used for video & photography (dronies), civil applications, policing, farming, firefighting, military and non-military security work, such as surveillance of pipelines. Previous posts can be found via the #drone tag and our drone / UAV categories.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey