Initially developed for gaming and 3-D rendering, graphics processing units (GPUs) were recognized to be a good fit to accelerate deep learning training. Its simple mathematical structure can easily be parallelized and can therefore take advantage of GPUs in a natural way. Further progress in compute efficiency for deep learning training can be made by exploiting the more random and approximate nature of deep learning work flows. In the digital space that means to trade off numerical precision for accuracy at the benefit of compute efficiency. It also opens the possibility to revisit analog computing, which is intrinsically noisy, to execute the matrix operations for deep learning in constant time on arrays of nonvolatile memories. To take full advantage of this in-memory compute paradigm, current nonvolatile memory materials are of limited use. A detailed analysis and design guidelines how these materials need to be reengineered for optimal performance in the deep learning space shows a strong deviation from the materials used in memory applications.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!