Via Parametric Press, JPEG images are everywhere in our digital lives, but behind their familiarity lie algorithms that remove details that are imperceptible to the human eye. This process produces the highest visual quality with the smallest file size—but what does that look like? This article shows you with live changes to images.
By the early 1980s, computers could store and display digital images, but there were many competing ideas about how best to do that. You couldn’t just send an image from one computer to another and expect it to work.
To solve this problem, the Joint Photographic Experts Group (JPEG), a committee of experts from all over the world, was established in 1986 as a joint effort by the ISO (International Organization for Standardization) and the IEC (International Electrotechnical Commission)—two international standards organizations headquartered in Geneva, Switzerland.
JPEG, the group of people, created JPEG, a standard for digital image compression, in 1992. Anyone who’s ever used the internet has probably seen a JPEG-encoded image. It is by far the most ubiquitous way of encoding, sending and storing images. From web pages to email to social media, JPEG is used billions of times a day—almost every time we view or send images online. Without JPEG, the web would be a little less colorful, a lot slower, and probably have far fewer cat pictures!
This article is about how to decode a JPEG image. In other words, it’s about what it takes to convert the compressed data stored on your computer to the image that appears on the screen. It’s worth learning about not just because it’s important to understand the technology we all use everyday, but also because, as we unravel the layers of compression, we learn a bit about perception and vision, and about what details our eyes are most sensitive to.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Select Python on Microcontrollers Newsletter: PyCon AU 2024 Talks, New Raspberry Pi Gear Available and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey