Optical Machine Learning with Diffractive Deep Neural Networks #MachineLearning #3Dprinting #DeepLearning #NeuralNetworks #TensorFlow @InnovateUCLA
The Ozcan Lab at UCLA has created optical neural networks using 3D printing and lithography. TensorFlow models were trained on the MNIST, Fashion-MNIST, and CIFAR-10 data sets using beefy GPUs. The trained models were then translated into multiple diffractive layers. These layers create the optical neural network. What the model lacks in adaptability it gains in speed as it can make predictions “at the speed of light” without any power. The basic workflow involves passing light through an input object which is filtered through the entire optical neural network to a detector which captures the results.
…each network is physically fabricated, using for example 3-D printing or lithography, to engineer the trained network model into matter. This 3-D structure of engineered matter is composed of transmissive and/or reflective surfaces that altogether perform machine learning tasks through light-matter interaction and optical diffraction, at the speed of light, and without the need for any power, except for the light that illuminates the input object. This is especially significant for recognizing target objects much faster and with significantly less power compared to standard computer based machine learning systems, and might provide major advantages for autonomous vehicles and various defense related applications, among others.
If you’d like to learn more about Photonics checkout the research happening at the Ozcan Lab. If you’d like more details about diffractive deep neural networks checkout this publication in Science or the most recent Ozcan Lab publication on the topic.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Comments Off on Optical Machine Learning with Diffractive Deep Neural Networks #MachineLearning #3Dprinting #DeepLearning #NeuralNetworks #TensorFlow @InnovateUCLA