Detecting Autism Spectrum Disorder Earlier with Technology #ArtificialIntelligence #MachineLearning #Autism #ASD @univmiami

Autism infinity symbol


The University of Miami recently posted about their “Behavioral Imaging of Autism” study at the Center for Autism and Related Disabilities (CARD). The study utilizes digitally collected data to diagnose patients. In the above photo Amy Ahn works with a toddler while wearing glasses that record facial expressions and gestures. This data will be used to develop technologies that will assist clinicians in diagnosing Autism Spectrum Disorder (ASD). A main goal of the study is to identify technologies that can improve access to diagnoses as well as diagnose patients earlier leading to earlier interventions.

…the earlier children are diagnosed, the quicker they can take advantage of interventions that can improve their lives dramatically.

This study includes a collaboration with Mei-Ling Shyu’s lab in the Department of Engineering at the University of Miami. They recently submitted an abstract to be presented at the 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). The abstract describes the ‘SP-ASDNet’ model, this classifier utilizes long short-term memory networks and convolution neural networks. Using visual data of a participant’s scanpath (when looking at an image) it is able to classify patient’s with ASD. Currently the SP-ASDNet was able to achieve 74.22% accuracy which is close to psychologists diagnosis rate of 70%.

There are a number of groups working towards machine learning assisted diagnosis of ASD. If you would like to learn more about CARD at the University of Miami checkout their website. If you’d like to learn more about machine learning approaches to diagnose ASD here is a helpful review.

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 15,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython 2019!

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

Maker Business — Patreon: 4 million patrons, $1 billion in payouts

Wearables — Shake it off

Electronics — Switch Mode Power

Biohacking — Vitamin-C + Gelatin for Accelerated Recovery

Python for Microcontrollers — 200 CircuitPython Libraries, Binho, BLE, and more! #Python #Adafruit #CircuitPython #PythonHardware @circuitpython @micropython @ThePSF @Adafruit

Adafruit IoT Monthly — Machine Learning 101, PWNing the ESP32, and more!

Microsoft MakeCode — Deep Breathing Encouragement with Circuit Playground Express!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

No Comments

No comments yet.

Sorry, the comment form is closed at this time.