Making your own CPU with a micro:bit #microbit #MakeCode @MakeCode
blogmywiki demonstrates using a BBC micro:bit as a simple 5-bit programmable computer.
Very early (and relatively inexpensive) home computers in the 1970s, like the Kim-1 or the Science of Cambridge MK-14, were not even like the home computers of the 1980s. These were single-board computers, uncased like a Raspberry Pi is today but they didn’t, initially at least, hook up to your TV, nor did they have a typewriter keyboard. They just had hexadecimal calculator-like number keypads and simple LED displays of the kind you also found on the calculators of the day.
You didn’t program them in a high-level, easy-to-read language like BASIC or Python, either. You programmed them in assembly language: short very simple commands (usually in the form of 3-letter ‘mnemonics’) that each had their own hexadecimal number value that you entered using the keypad. This was very hard, slow and required a lot of planning and patience, but it meant that you were writing code that ran very quickly indeed on the ‘bare metal’ of the CPU (central processing unit). BASIC programs running on the same processors like the 6502 ran much more slowly, because your English-like BASIC commands had to be translated into something the processor could understand (machine code) every time it ran.
The code to turn the micro:bit into a CPU is written in Microsoft MakeCode.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 9.2.1, What is DMA, PyConUS 2025 and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey