Adafruit is celebrating Lunar New Year🐍 Wednesday 1/29/2025. In combination with MLKDay, shipping could be delayed. Please allow extra time for your order to ship!
I2C stands for Inter-Integrated-Circuit communications, it’s meant for short distances on a PCB or subassembly. But, hey, we’re engineers and we like to push the limits of technology, right? So why not try to have I2C run over a meter long cable, or even longer? Well, if you try to do that you’ll quickly find that the length of the cable adds capacitance and resistance that slows down the open-drain pullups used in I2C, making it hard to use 100KHz+ clock speeds. You could try slowing down your I2C clock to 1 KHz… or you could use an Adafruit LTC4311 active terminator like this one!
Using this board is easy: connect it to your I2C bus at the beginning of the chain (if you don’t have a massively long cable, you can also try at the end of the chain). When the chip is powered and enabled, it will watch the SCL and SDA lines. When it sees them being pulled up through the I2C resistors, it will activate and dump in some current to give it a boost thru to the top power rail.
You can now achieve much faster data rates without having to noodle with resistors and over long cables. We ran a 400 KHz OLED over 3 meters of phone wire with ease. With a 100KHz signal, we even ran a BME680 over 100 feet of Ethernet (about 3000pF round trip!) and had an OLED display the sensor details.
Runs with any bus voltage, from 1.6V to 5.5V, and up to 400 KHz SCL speed, with cables up to 4000pF. No special firmware, software, or configuration required. Simply plug the power, ground, SCL, and SDA connectors into your bus and watch as your rise times magically turn sawtooths into square waves.
To get you going fast, we spun up a custom made PCB in the STEMMA QT form factor, making it easy to interface with. The STEMMA QT connectors on either side are compatible with the SparkFun Qwiic I2C connectors. This allows you to make solderless connections between your development board and the LTC4311 or to chain it with a wide range of other sensors and accessories using a compatible cable.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 2025 Wraps, Focus on Using Python, Open Source and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey