The Origin of Robot Arm Programming Languages #Programming #Robotics #History @rodneyabrooks

Rodney Brooks provides reminisces about how robot programming languages came about in the 20th century.

This short blog post is about the origin of languages for describing tasks in automation, in particular for industrial robot arms. Three people who have passed away, but were key players were Doug Ross, Victor Scheinman, and Richard (Lou) Paul, not as well known as some other tech stars, but very influential in their fields.

Doug Ross had worked on the first MIT computer, Whirlwind, and then in the mid nineteen fifties he turned to the numerical control of three and five axis machine tools–the tools that people use to cut metal parts in complex shapes.

In the late sixties, mechanical engineer Victor Scheinman at the Stanford AI Lab designed what became known as the Stanford Arm. They were controlled at SAIL by a PDP-8 minicomputer, and were among the very first electric digital arms.

Richard (Lou) Paul developed the first programming language for control of a robot arm trying to do something as sophisticated as assembly. It was called WAVE. Besides the language, Paul also developed inverse kinematics techniques, which today are known as IK solvers, and used in almost all robots.

See the article which explains in detail the advances in the field leading up to the environment we know today.


Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 30,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


Maker Business — Savannah tells the story of the supply chain crisis in the U.S.

Wearables — Rattle and glow

Electronics — Breadboard Capacitance

Python for Microcontrollers — Python on Microcontrollers Newsletter: Python Developer’s Survey, vscode.dev and more! #Python #Adafruit #CircuitPython @micropython @ThePSF

Adafruit IoT Monthly — No-Code IoT with WipperSnapper, Beaming Internet across the Congo, and more!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NEW PRODUCT – USB Type C microSD Card Reader/Writer

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !



No Comments

No comments yet.

Sorry, the comment form is closed at this time.