MIT researchers have developed a method called tensor holography could enable the creation of holograms for virtual reality, 3D printing, and medical imaging capable of running on a smartphone.
Computer-generated holography sidesteps these challenges by simulating the optical setup. But the process can be a computational slog. “Because each point in the scene has a different depth, you can’t apply the same operations for all of them,” says Shi. “That increases the complexity significantly.” Directing a clustered supercomputer to run these physics-based simulations could take seconds or minutes for a single holographic image. Plus, existing algorithms don’t model occlusion with photorealistic precision. So Shi’s team took a different approach: letting the computer teach physics to itself.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey