Adafruit is celebrating Lunar New Year🐍 Wednesday 1/29/2025. In combination with MLKDay, shipping could be delayed. Please allow extra time for your order to ship!
Circuit Synthesis for Analog Computing @TheOfficialACM
Sara Achour posts on the ACM SIGPLAN blog about synthesizing analog circuit blocks for computing.
A differential equation-solving analog device is a reconfigurable computing platform which leverages the physics of the underlying substrate to implement dynamical system computations. In the last article, we discussed how a programmer would manually configure an analog device to perform computation. In this article, we will discuss how to automatically configure an analog device to run a target dynamical system. We frame this problem of automatically configuring the analog hardware as a compilation problem.
Reconfigurable analog devices are a challenging target for circuit synthesis for the following reasons:
Complex Blocks: Reconfigurable analog devices often offer highly parametric blocks and complex blocks which implement non-standard functions. The compiler needs to creatively program blocks to effectively map the dynamical system to the analog hardware.
Non-Computational Blocks: Analog devices often provide special-use blocks which copy and convert signals (assembly blocks) or internally route signals (route blocks) throughout the device. The compiler needs to specially handle such blocks to use them correctly.
Restrictive Routing: Analog devices support a limited number of digitally settable connections and typically prioritize offering connections between spatially co-located blocks. Long-distance connections often involve multiple route blocks and are limited in supply. The compiler needs to intelligently lay out the circuit on the device so that all of the connections can be implemented on the hardware.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 2025 Wraps, Focus on Using Python, Open Source and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey