A one-bit processor explained: the vintage MC14500B #VintageComputing @kenshirriff

The Motorola MC14500B is a 1-bit processor introduced in 1976. While a 1-bit processor might seem almost useless, it was marketed as an Industrial Control Unit for applications that made simple decisions based on Boolean logic, for example, air conditioning, motor control, or traffic lights.

Ken Shirriff discusses reverse engineering this classic chip.

The MC14500B has an unusual architecture, making it more of a building block than a complete microprocessor. In particular, the chip doesn’t include any support for memory or addresses; it didn’t even have a program counter. The program counter, instruction fetches, jumps, subroutine calls, and I/O needed to be implemented with external circuitry. This is a key reason that the chip was so simple. (The other reason, of course, was that it only supported one bit.)

Since the MC14500B was designed for industrial control applications, you’d expect it to be a microcontroller, but it’s the opposite of a microcontroller in many ways. A typical microcontroller is a computer-on-a-chip including RAM and ROM, with strong I/O support, providing a single-chip solution. The MC14500B, however, requires multiple external chips to make it usable.

Read the full details on Ken’s blog here.

Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.

Join 35,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7pm ET! To join, head over to YouTube and check out the show’s live chat – we’ll post the link there.

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Follow Adafruit on Instagram for top secret new products, behinds the scenes and more https://www.instagram.com/adafruit/

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org

Maker Business — Chip inventories rise as demand falls

Wearables — How to attach a battery to your next wearables project

Electronics — Check out this shorthand shortcut

Python for Microcontrollers — Python on Microcontrollers Newsletter: 400 CircuitPython Libraries, 3m Thanks and much more! #CircuitPython #Python @ThePSF @micropython @Raspberry_Pi

Adafruit IoT Monthly — 2022 in Recap!

Microsoft MakeCode — MakeCode Thank You!

EYE on NPI — Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — NEW PRODUCT – Adafruit ESP32-S2 Reverse TFT Feather

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !

1 Comment

  1. Steampunk Professor

    We used these as part of our electronics unit when I did my Phystcs degree back in the mists of time. They were a fun introduction to the nitty gritty of microcontrollers.

Sorry, the comment form is closed at this time.