A 32-bit Arm (a reduced instruction set computing (RISC) architecture) microprocessor has been developed with metal-oxide thin-film transistor technology on a flexible substrate (called PlasticARM).
Separate from the mainstream semiconductor industry, flexible electronics operate within a domain that seamlessly integrates with everyday objects, including wearables, through a combination of ultrathin form factor, conformability, extreme low cost and potential for mass-scale production. PlasticARM pioneers the embedding of billions of low-cost, ultrathin microprocessors into everyday objects.
Unlike conventional semiconductor devices, flexible electronic devices are built on substrates such as paper, plastic or metal foil, and use active thin-film semiconductor materials such as organics or metal oxides or amorphous silicon. They offer a number of advantages over crystalline silicon, including thinness, conformability and low manufacturing costs. Thin-film transistors (TFTs) can be fabricated on flexible substrates at a much lower processing cost than metal–oxide–semiconductor field-effect transistors (MOSFETs) fabricated on crystalline silicon wafers.
The aim of the TFT technology is not to replace silicon. As both technologies continue to evolve, it is likely that silicon will maintain advantages in terms of performance, density and power efficiency. However, TFTs enable electronic products with novel form factors and at cost points unachievable with silicon, thereby vastly expanding the range of potential applications.
Read more in Nature