But in the case of the bismuth crystal, there is no diffusion. Molecules don’t shift randomly and spread out while reacting with each other. Nevertheless, Fuseya, Kapitulnik and several collaborators began to simulate bismuth crystal growth using Turing’s equations. After three years, they ended up with a simulated pattern, published last month in Nature Physics, that looked almost identical to the stripes in the real crystal. “It was really an amazing match,” Kapitulnik said. It convinced him that Turing’s mechanism was indeed responsible for the stripes in the bismuth. And it demonstrated once again how robust and powerful Turing’s original insight was.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey