Building battery-free electronic devices with CircuitPython #CircuitPython @techxplore_com
Computer engineers from Northwestern University and Delft University of Technology (TU Delft) introduces a new platform that enables makers, hobbyists and novice programmers to build their own battery-free electronic devices that run with intermittent, harvested energy.
BFree is a system which includes energy-harvesting hardware (the BFree Shield) and a power-failure-resistant version of CircuitPython, one of the most accessible and most used programming languages. All the user needs is a basic understanding of Python in order to quickly and easily turn any do-it-yourself (DIY) smart device into a battery-free version. With this technology, novice programmers can now turn their DIY battery-powered motion sensor, for example, into a solar-powered sensor with an infinite lifetime.
“Right now, it’s virtually impossible for hobbyists to develop devices with battery-free hardware, so we wanted to democratize our battery-free platform,” said Northwestern’s Josiah Hester, who co-led the work. “Makers all over the internet are asking how to extend their devices’ battery life. They are asking the wrong question. We want them to forget about the battery and instead think about more sustainable ways to generate energy.”
When devices bypass the battery and instead rely on energy harvesting, the power supply is no longer constant. If the sun goes behind a cloud, for example, then solar power might be temporarily disrupted.
With BFree, researchers have solved this issue. The technology enables devices to run perpetually with intermittent energy. When power is interrupted, BFree pauses calculations. When power returns, it automatically resumes where it left off without losing memory or needing to run through a long list of operations before restarting.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey
Pull request coming soon to CircuitPython 🙂