“Growing up in the Bowie, Md., area, whenever we drove by NASA’s Goddard Space Flight Center, I told my parents that I would work there someday,” recounts Proctor, who is now an associate chief at Goddard for NASA’s Electrical Engineering Division (EED).
Originally, Proctor was focused on astronomy, but during high school at an engineering exploration summer program he solved “a resistor equivalence problem that nobody else in the class had gotten [and] the instructor recommended I look at electrical engineering as a career instead.” He got a master’s in EE from Johns Hopkins University. “I started working at Tracor Systems (now part of BAE Systems) in their Standard Missile Program,” recalls Proctor. “In 2001, after three years there, an opening at Goddard became available. I applied…and I’ve been there ever since.”
Today, as an associate chief in the EED—one of six senior leaders in the division—Proctor manages the EED’s operational budget, and also oversees a major support contract, the Electrical Systems Engineering Services contract. The EED’s portfolio includes the Magnetospheric Multiscale (MMS) Mission, International Space Station Cosmic Ray Energetics And Mass (ISS-CREAM), and Neutron star Interior Composition ExploreR (NICER).
As a child, I took things apart and put them back together. When I was 16, I attended an engineering exploration summer program hosted by Morgan State University in Baltimore. It changed my life. The instructors gave us assignments in different engineering disciplines. One problem in particular was in electrical engineering, it was an exercise to calculate the equivalent resistance of a circuit. No one in the class got the answer so I asked the instructor if I could try to calculate the resistance value. I wrote my answer down and I got it right. After class, the instructors pulled me aside and recommended that I look at electrical engineering as a career field.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: CircuitPython 2025 Wraps, Focus on Using Python, Open Source and More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey