Usually, to feel the influence of a magnetic field, a particle would have to pass through it. But in 1959, physicists Yakir Aharonov and David Bohm predicted that, in a specific scenario, the conventional wisdom would fail. A magnetic field contained within a cylindrical region can affect particles — electrons, in their example — that never enter the cylinder. In this scenario, the electrons don’t have well-defined locations, but are in “superpositions,” quantum states described by the odds of a particle materializing in two different places. Each fractured particle simultaneously takes two different paths around the magnetic cylinder. Despite never touching the electrons, and hence exerting no force on them, the magnetic field shifts the pattern of where particles are found at the end of this journey, as various experiments have confirmed (SN: 3/1/86).
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey