The Great Search: Miniature Ferrite Core Ring (Toroid) #TheGreatSearch #DigiKey @digikey @Adafruit

(Video) We were flipping through a cool old book on how computers were made and there was a section on ‘core memory’. This is how data was stored dynamically on computers before capacitive-based RAM. Instead of storing a charge on a transistor’s gate, the flip of a ferromagnetic core in a grid could store a single bit. Some folks make core memory for fun now – you just need some enameled wire and miniature ferrite cores! While the ultra-tiny rings of yore are no longer made, you can still get some pretty small toroids. Let’s see what’s available at Digi-Key!

Computers: Their History and how They Work by Richard B. Rusch (1969)

See on Digi-Key here!

See other episodes of The Desk of Ladyada in the playlist here and other Great Searches in the playlist here.


Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!

Join us every Wednesday night at 8pm ET for Ask an Engineer!

Join over 38,000+ makers on Adafruit’s Discord channels and be part of the community! http://adafru.it/discord

CircuitPython – The easiest way to program microcontrollers – CircuitPython.org


New Products – Adafruit Industries – Makers, hackers, artists, designers and engineers! — New Products 11/15/2024 Featuring Adafruit bq25185 USB / DC / Solar Charger with 3.3V Buck Board! (Video)

Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi

EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey

Adafruit IoT Monthly — The 2024 Recap Issue!

Maker Business – Adafruit Daily — Apple to build another chip at TSMC Arizona

Electronics – Adafruit Daily — SMT Tip – Stop moving around!

Get the only spam-free daily newsletter about wearables, running a "maker business", electronic tips and more! Subscribe at AdafruitDaily.com !


1 Comment

  1. 80 mil to 14 mil diameter in 18 years gives a density doubling time of 2.4 years. (7.2 years for halving 1-dimension)

    Since 1972 that extrapolates to 21 density doublings (2M) or 7 linear doublings and cores should be 2^7 times smaller in diameter, or under 3 microns.

    Current hard drives use about 1 nm diameter domains, so a factor of 3000 in 1-dimension. The 1D doubling time since 1972 was 2.7 years instead of 7.2

    Things sped up.

    Unfortunately we only got the increase in 2 dimensions, so we don’t have hard disks with hundreds of thousands of platters, yet.

Sorry, the comment form is closed at this time.