The discrete Fourier transform (DFT) is one of the most important algorithms in modern computing: it plays a key role in communications, image and audio processing, machine learning, data compression, and much more. Curiously, it’s also among the worst explained topics in computer science. For example, the Wikipedia article on the matter assaults the reader with around three dozen cryptic formulas, but offers no accessible explanation how or why the algorithm works. lcamtuf’s thing dives into the issue:
My goal today is to change this. Let’s start with the basics: DFT takes a time-domain waveform — for example, an audio track — and turns it into frequency-domain data: a series of sine wave intensities that describe the underlying signal. If summed back together, these sine waves of different frequencies, phases, and magnitudes should faithfully recreate the original waveform.
To illustrate the utility of DFT, let’s have a look at a conventional waveform representation of a 🔈 police siren next to its frequency-domain treatment. On both plots, the horizontal axis represents time. In the top image, the vertical axis represents frequency and pixel color represents intensity. The top view tells us very little about the recording; in the bottom plot, the shifting pitch of the siren is easy to see, at its base frequency and a number of harmonics.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: Open Hardware is In, New CircuitPython and Pi 5 16GB, and much more! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey