Henrik Forstén discusses the design and construction of a 6 GHz pulse compression radar.
There are many kinds of pulse radars, and the one I want to make is a pulse compression radar that supports arbitrary waveforms. Generating only linear frequency sweeps could be simpler and sufficient for many practical applications, but it wouldn’t be as interesting.
The requirement for arbitrary waveform means that there needs to be a digital-to-analog converter (DAC) with large enough sampling rate to generate the transmitted waveform. The receiver also needs an ADC with large enough sample rate to sample the whole RF bandwidth.
Using just a microcontroller isn’t possible for this application. An FPGA is required for accurate timing of pulse generation and for managing the ADC and DAC data. Accurate timing of pulse generation is critical for proper operation. Switching between transmit and receive needs to be done quickly and accurately, any timing error in pulse triggering or in the receiver will be visible as large distance error.
Similar to my previous radars, the operating frequency will be around 6 GHz. This is the highest frequency with many off-the-shelf cheap components due to many consumer applications.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: A New Arduino MicroPython Package Manager, How-Tos and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey