Give your Feather project a lift with the Adafruit AirLift FeatherWing – a FeatherWing that lets you use the powerful ESP32 as a WiFi co-processor. You probably have your favorite Feather (like the Feather M4) that comes with its own set of awesome peripherals and lots of libraries. But it doesn’t have WiFi built in! So lets give that chip a best friend, the ESP32. This chip can handle all the heavy lifting of connecting to a WiFi network and transferring data from a site, even if its using the latest TLS/SSL encryption (it has root certificates pre-burned in).
Having WiFi managed by a separate chip means your code is simpler, you don’t have to cache socket data, or compile in & debug an SSL library. Send basic but powerful socket-based commands over 8MHz SPI for high speed data transfer. You can use 3V or 5V Arduino, any chip from the ATmega328 or up, although the ‘328 will not be able to do very complex tasks or buffer a lot of data. It also works great with CircuitPython, a SAMD51/Cortex M4 minimum required since we need a bunch of RAM. All you need is an SPI bus and 2 control pins plus a power supply that can provide up to 250mA during WiFi usage.
We placed an ESP32 module on a FeatherWing with a separate 3.3V regulator, and a tri-state chip for MISO so you can share the SPI bus with other ‘Wings. Comes fully assembled and tested, pre-programmed with ESP32 SPI WiFi co-processor firmware that you can use in CircuitPython to use this into WiFi co-processsor over SPI + 2 pins. We also toss in some headers so you can solder it in and plug into a doubler, but you can also pick up a set of stacking headers to stack above/below your Feather.
We’ve tested this with all our Feathers and it should work just fine with them except the ESP8266 & ESP32 Feathers (cause they already have WiFi!). For use in Arduino, the ‘328 and ’32u4 you can do basic connectivity and data transfer but they do not have a lot of RAM so we don’t recommend them – use the M0, M4 or similar, for best results! For CircuitPython use, a Feather M4 or nRF52840 works best – the M0 series does not have enough RAM in CircuitPython.
Adafruit publishes a wide range of writing and video content, including interviews and reporting on the maker market and the wider technology world. Our standards page is intended as a guide to best practices that Adafruit uses, as well as an outline of the ethical standards Adafruit aspires to. While Adafruit is not an independent journalistic institution, Adafruit strives to be a fair, informative, and positive voice within the community – check it out here: adafruit.com/editorialstandards
Stop breadboarding and soldering – start making immediately! Adafruit’s Circuit Playground is jam-packed with LEDs, sensors, buttons, alligator clip pads and more. Build projects with Circuit Playground in a few minutes with the drag-and-drop MakeCode programming site, learn computer science using the CS Discoveries class on code.org, jump into CircuitPython to learn Python and hardware together, TinyGO, or even use the Arduino IDE. Circuit Playground Express is the newest and best Circuit Playground board, with support for CircuitPython, MakeCode, and Arduino. It has a powerful processor, 10 NeoPixels, mini speaker, InfraRed receive and transmit, two buttons, a switch, 14 alligator clip pads, and lots of sensors: capacitive touch, IR proximity, temperature, light, motion and sound. A whole wide world of electronics and coding is waiting for you, and it fits in the palm of your hand.
Have an amazing project to share? The Electronics Show and Tell is every Wednesday at 7:30pm ET! To join, head over to YouTube and check out the show’s live chat and our Discord!
Python for Microcontrollers – Adafruit Daily — Python on Microcontrollers Newsletter: New Python Releases, an ESP32+MicroPython IDE and Much More! #CircuitPython #Python #micropython @ThePSF @Raspberry_Pi
EYE on NPI – Adafruit Daily — EYE on NPI Maxim’s Himalaya uSLIC Step-Down Power Module #EyeOnNPI @maximintegrated @digikey